Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Cell Proteomics ; 20: 100120, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1284342

RESUMEN

Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Interacciones Huésped-Patógeno/fisiología , SARS-CoV-2/patogenicidad , Coronavirus Humano 229E/metabolismo , Coronavirus Humano 229E/patogenicidad , Coronavirus Humano OC43/metabolismo , Coronavirus Humano OC43/patogenicidad , Proteasas Similares a la Papaína de Coronavirus/genética , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mapas de Interacción de Proteínas , SARS-CoV-2/metabolismo , Respuesta de Proteína Desplegada , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
2.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1278205

RESUMEN

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Virus de la Hepatitis Murina/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Factor de Transcripción Activador 6/metabolismo , Animales , Antivirales/uso terapéutico , Línea Celular , Chlorocebus aethiops , Sistemas de Liberación de Medicamentos , Endorribonucleasas/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , RNA-Seq , Células Vero , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
3.
Life Sci ; 255: 117842, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: covidwho-403331

RESUMEN

The outbreak of COVID-19 caused by 2019-nCov/SARS-CoV-2 has become a pandemic with an urgent need for understanding the mechanisms and identifying a treatment. Viral infections including SARS-CoV are associated with increased levels of reactive oxygen species, disturbances of Ca++ caused by unfolded protein response (UPR) mediated by endoplasmic reticulum (ER) stress and is due to the exploitation of virus's own protein i.e., viroporins into the host cells. Several clinical trials are on-going including testing Remdesivir (anti-viral), Chloroquine and Hydroxychloroquine derivatives (anti-malarial drugs) etc. Unfortunately, each drug has specific limitations. Herein, we review the viral protein involvement to activate ER stress transducers (IRE-1, PERK, ATF-6) and their downstream signals; and evaluate combination therapies for COVID-19 mediated ER stress alterations. Melatonin is an immunoregulator, anti-pyretic, antioxidant, anti-inflammatory and ER stress modulator during viral infections. It enhances protective mechanisms for respiratory tract disorders. Andrographolide, isolated from Andrographis paniculata, has versatile biological activities including immunomodulation and determining SARS-CoV-2 binding site. Considering the properties of both compounds in terms of anti-inflammatory, antioxidant, anti-pyrogenic, anti-viral and ER stress modulation and computational approaches revealing andrographolide docks with the SARS-CoV2 binding site, we predict that this combination therapy may have potential utility against COVID-19.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Diterpenos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melatonina/farmacología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Factor de Transcripción Activador 6/metabolismo , Antivirales/farmacología , COVID-19 , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Humanos , Terapia Molecular Dirigida , Pandemias , Proteínas Serina-Treonina Quinasas/metabolismo , SARS-CoV-2 , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA